
Vue, Part 1
Recitation 6 2024

Front End Starter Code Walkthrough01
Discussion / Resources02

Plan

Questions / Wrap-up03

Prep Review

Should a user's authentication status
be saved as local state in a
component (e.g., Header.vue), or be
kept in a store?

Are you allowed to use a third-party
styling packages (e.g., Bootstrap,
Material Design, etc.) for your
assignments/projects in 6.1040?

Are dynamic routing methods
supported by vue-router?

What is the method that
vue-router uses to add
parameters to a route?

Front End
Starter Code!01

Create Your Repo:

https://github.com/61040-fa24/frontend-starter

https://github.com/61040-fa24/frontend-starter

Getting Started
1. Run npm install

2. Copy over your .env file from your backend code into the

root folder

3. Run npm run dev:server to start the server. Run npm

run dev:client to start the client

After recitation: Read the rest of the README for

instructions on transferring over your backend code and

deployment!

Repo Contents

Overview - Non-client folder
api – connection with server-side routes (what you

wrote last week)

public – top-level static assets

● Change your site favicon here!

server – your backend code!

index.html – app-level headers

⭐
⭐

⭐

Overview - client folder
client – all relevant frontend code

● assets – assets that are only compiled if necessary

○ store your images in images/

● components – your app's components

● router – page-level routing

● stores – keep track of app state (i.e. current user)

● utils – general utility functions

● views – your app's pages

● App.vue – app definition

⭐

client/assets
● images – where you should store all your relevant images

● Contains global css files (including css variables)

client/components
● All the components for your app

● Each component will generally correspond to a certain section of your app

○ i.e. a login form, a list of posts

○ Not necessarily just overall pages

○ Structuring is up to your discretion, but keeping things modular will

make your life a lot easier!

client/views
● Pages for your app, where

each view corresponds to 1

page layout

● Example: user login page

● Use params to create pages

that may show different

content but are not

necessarily completely

different pages

client/router
● Client-side routing to move

between your different pages

● We use vue-router -

documentation here:

https://router.vuejs.org/guide/

● Supports dynamic routing!

○ Functionality to view

other user profiles based

on user id

https://router.vuejs.org/guide/

client/stores
● Variables/functions for keeping track of the overall state of your app for

the user

● This should only store information that should persist across refreshes on

a user's device on the client side (i.e. who is logged in rn)

○ Not a substitute for mongodb!!

● What parts do we put in store vs components?

client/utils
● Utility methods that you might find useful across different

components/concepts

○ formatDate helps format a date prettily on the frontend

● Feel free to make your own functions! If you find yourself writing the same

processing code for many different areas of the application, it'll make your

life easier if you extract them into a utils file (6.102)

Component
Deep Dive

client > components > Post
● An example of a set of components that helps a user create/edit/view

posts - CreatePostForm.vue

● Separation of the script from the template and style

Styling
Generally scoped within the file it's in for ease of reference

● Applies only to the specific component

Backend Communication
● Wrapper around fetch using

fetchy (in utils/fetchy.ts)

● Each route structured as

api/___

● emit communicates events back

to their parent components

● Let’s see how this works in

PostListComponent.vue!

Discussion /
Resources02

Client-side Validation
Best practices:

● Frontend shouldn't be more restrictive than the backend – if you allow

certain responses in the backend, you should be able to handle that in the

frontend as well

● Validating things that can be easily checked on the frontend side can

make you make less irrelevant requests

○ i.e. checking input format

○ But you shouldn't do things that would require a database call

anyways (i.e. checking whether a queried user is existent)

General Coding Resources
● Vue 3 Tutorial:

https://www.youtube.com/playlist?list=PL4cUxeGkcC9hYYGbV60Vq3IXYNfD

k8At1

● Vue Style Guide: https://v2.vuejs.org/v2/style-guide/?redirect=true

● Vue guide: https://vuejs.org/guide/introduction.html

● Vue Cheatsheet: https://devhints.io/vue

● Our router: https://router.vuejs.org/guide/

https://www.youtube.com/playlist?list=PL4cUxeGkcC9hYYGbV60Vq3IXYNfDk8At1
https://www.youtube.com/playlist?list=PL4cUxeGkcC9hYYGbV60Vq3IXYNfDk8At1
https://v2.vuejs.org/v2/style-guide/?redirect=true
https://vuejs.org/guide/introduction.html
https://devhints.io/vue
https://router.vuejs.org/guide/

Styling/Formatting Resources
● Icon library: https://fontawesome.com/

● MDN web docs:

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

● Pure.css: https://purecss.io/

○ What we currently use in the front end, but feel free to ignore it and

just use plain CSS

https://fontawesome.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://purecss.io/

Questions /
Wrap-up03

https://forms.gle/AXVqqkmqpSpppZ4E7

https://forms.gle/AXVqqkmqpSpppZ4E7

