
6.1040: So�tware Design

Service Design
Arvind Satyanarayan & Max Goldman
with material by Daniel Jackson

Fall ’24

1

Client / Server

HTTP request

process request
& build response

HTTP response

•
•
•
•
•
•

•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

This interface
requires design

URLs requests responses

7

Pitch: social puzzle gaming
with leaderboards (for friendly competition)
and collaborative play (for friendly cooperation)

Flipart

ReallyBadChess

Auth-ing Playing

8

Pitch: social puzzle gaming
with leaderboards (for friendly competition)
and collaborative play (for friendly cooperation)

A question: is inviting a concept,
or an action in another concept?

Playing
Inviting

Chatting

Friending
10

Puzzmo
concept Friending [User]
purpose ...
principle ...

state
friends: User set User

actions
friend (a: User, b: User)

a.friends += b ; b.friends += a
-or-
add (a, b) and (b, a) to friends
-or-
···

other actions...

concept Inviting [User]
purpose ...
principle ...

state
invites: set Invitation
from: invites User
to: invites User

actions
invite (s: User, r: User, out inv: Invitation)

invites += inv ; inv.from := s ; inv.to := r

accept (r: User, inv: Invitation, out s: User)
inv.to == r ; s := inv.from ; invites -= inv

other actions...
15

Example: concept Inviting

16

concept Authenticating
__abbreviated from "Concept sync" tutorial!__
purpose: ... principle: ...
state:
 registered: set User
 username, password: registered -> one String
actions:
 register(un: String, pw: String, out user: User)
 registered += user ; user.username := un ; user.password := pw
 authenticate(un: String, pw: String, out user: User)
 require user.username == un and user.password == pw

concept Sessioning [User]
__abbreviated from "Concept sync" tutorial!__
purpose: ... principle: ...
state:
 active: set Session
 user: active -> one User
actions:
 start(user: User, out session: Session)
 session.user := user
 getUser(session: Session, out user: User)
 user := session.user

concept Friending [User]
purpose: ... principle: ...
state:
 friends: User -> set User
actions:
 friend(a: User, b: User)
 require (a, b) not in friends
 a.friends += b ; b.friends += a
 assertFriends(a: User, b: User)
 require (a, b) in friends

concept Playing
purpose: ... principle: ...
state:
 ... Play ...
actions: ...

concept Inviting [User, Event]
purpose: ... principle: ...
state:
 invites: set Invitation
 from, to: invites -> one User
 for: invites -> one Event
actions:
 invite(sender: User, recipient: User, event: Event, out inv: Invitation)
 invites += inv ; inv.from := sender ; inv.to := recipient
 inv.for := event
 accept(recipient: User, inv: Invitation, out sender: User, out event: Event
 require inv.to == recipient
 invites -= inv ; sender := inv.from
 event := inv.for

app Puzzmo
include Authenticating as Auth
let User = Auth.User
include Sessioning [User]
include Playing
let Play = Playing.Play
include Friending [User]
include Inviting [User, none] as InvF
include Inviting [User, Play] as InvP

sync __inviteToFriend(from: User, to: User, out invite: InvF.Invitation)__
 InvF.invite(from, to, none, invite)

sync __friend(to: User, invite: InvF.Invitation)__
 InvF.accept(to, invite, from, none)
 Friending.friend(to, from)

sync __inviteToPlay(from: User, to: User, play: Play, out invite: InvP.Invitati
 Friending.assertFriends(from, to)
 InvP.invite(from, to, play, invite)

sync __joinGame(to: User, invite: InvP.Invitation)__
 InvP.accept(to, invite, from, play)
 Playing.SOMETHING(play)

Puzzmo

Dependencies Data Models
sets & relations in the stateconcepts in the app

Chatting

Friending

Auth-ing

Inviting

Playing

A B app including A must also include B

username password

User

String

friendsUser
from to

Invitation

User
! !

?

! !

Auth-in
g

Invitin
g

Frie
nding

T U relation from type T to type U V generic

which we can then compose

into a global data model

18

Client / Server

HTTP request

process request
& build response

HTTP response

•
•
•
•
•
•

•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

This interface
requires design

URLs requests responses

19

IP addresses

31.13.71.36
176.32.98.166

172.217.10.78
104.244.42.193

Web Browser

Go to IP address directly?

20

URLs: Uniform Resource Locators

https://61040-forum.csail.mit.edu/t/class-spotify-
playlist/112?sort=score&status=all#footer-buttons

protocol host path

query fragment

21

Using a URL

Web Browser
 Go to URL

https://61040-forum.csail.mit.edu/t/class-spotify-playlist/112?sort=score&status=all
protocol host path query

22

DNS lookup

Web Browser

DNS

Server

 Go to URL

 Look up domain name

 Resolve to IP address

128.52.130.153

61040-forum.csail.mit.eduhttps://
host

/t/class-spotify-playlist/112?sort=score&status=all25

HTTP request

Web Browser

DNS

Server DB

 Go to URL

 Look up domain name

 Resolve to IP address

128.52.130.153

 HTTP request

 Route the request

 Process request
 & build response

 HTTP response

https://61040-forum.csail.mit.edu/t/class-spotify-playlist/112?sort=score&status=all
protocol host path query

 Parse response
 & render page

“The two hardest problems in CS are:
(i) cache invalidation,
(ii) naming things, and
(iii) o�f by one errors”

30

HTTP methods
GET url

 GET https://61040-forum.csail.mit.edu/top?order=posts
 200 < lots of html >

POST url + body and PUT url + body
 POST https://61040-forum.csail.mit.edu/bookmarks.json

body { "bookmarkable_id": 148 }
 200 { "success": "OK", "id": 7 }

DELETE url
 DELETE https://61040-forum.csail.mit.edu/bookmarks/7.json
 200 { "success": "OK" }

... and several others
31

Early web service URLs
/shopping_cart.asp?action=update_qty&user=123

/postComment.jsp?entryID=853&text=...

/services.php?method=bid&item=236&...

 Inconsistent: di�ferent APIs might use di�ferent
 path and paramter conventions, and individual
 APIs might be internally inconsistent

 Di��cult to maintain and extend (for developers)

 Not easily discoverable or recognizable (for users)

32

REST: Representational State Transfer
( Just some highlights! )

Client/server architecture
A protocol over HTTP de�nes the interface between client & server

Stateless
Server does not store state for individual clients: each request is self-contained

Representations
Resources are identi�ed by URLs
Resources have representations in the protocol, transfered back and forth
Protocol reps are not necessarily stored reps (good old rep. independence)
Protocol reps include the information a client needs to make further requests,

e.g. to update an entity, �nd related entities, etc.
33

RESTful
"Applying verbs to nouns"

 /people/arvind
Pro�le page: /people/arvind.html
Pro�le picture: /people/arvind.jpg
Data structure: /people/arvind.json

Collections:
/people
/people/arvind/flair
Instances:
/people/arvind
/people/arvind/flair/275

URL paths to identify resources (nouns)
Use related paths to identify di�ferent representations
Use hierarchy to indicate structure

37

RESTful
"Applying verbs to nouns"

 /people/arvind/flair
 body { "type": "pin", ... }

 /people/arvind

 /people/arvind/flair/5
 body { "text": " " }

 DELETE /people/arvind/flair/10

Create: POST

Read: GET

Update: PUT

Delete:

Pro�le page: /people/arvind.html
Pro�le picture: /people/arvind.jpg
Data structure: /people/arvind.json

Collections:
/people
/people/arvind/flair
Instances:
/people/arvind
/people/arvind/flair/275

URL paths to identify resources (nouns)
Use related paths to identify di�ferent representations
Use hierarchy to indicate structure

HTTP methods for di�ferent actions (verbs) on the resource

Consistency
and data safety

mutation?
38

HTTP methods and data safety
URL paths to identify resources (nouns)
HTTP methods for di�ferent actions (verbs) on the resource

 /people/arvind/flair
 /people/arvind
 /people/arvind/flair/5
 DELETE /people/arvind/flair/10

Safe methods do not change the resource

Idempotent methods can be called multiple
times with the same e�fect as calling once

Create: POST
Read: GET
Update: PUT
Delete:

Method Safe Idempotent
GET
POST
PUT
DELETE

42

HTTP methods and data safety
URL paths to identify resources (nouns)
HTTP methods for di�ferent actions (verbs) on the resource

 /people/arvind/flair
 /people/arvind
 /people/arvind/flair/5
 DELETE /people/arvind/flair/10

Safe methods do not change the resource

Idempotent methods can be called multiple
times with the same e�fect as calling once

Create: POST
Read: GET
Update: PUT
Delete:

safe

idempotent

GET

PUT
DELETE

POST

43

Design a RESTful API
for Puzzmo
What are the URL paths?

How are resources nested?

What are the HTTP methods?

Inviting

Friending
44

type Session = void;

export class Routes {

 // POST /friends/invitations/:userid
 inviteToFriend(sess: Session, to_user_id: string) { }

 // GET /friends/invitations
 listFriendInvitations(sess: Session) { }

 // POST /friends/:inviteid
 // -or- maybe better if it was a userid in the URL?
 makeFriend(sess: Session, invitation_id: string) { }

 // GET /friends
 allMyFriends(sess: Session) { }

 // POST /play/:playid/invitation/:userid
 inviteToPlay(sess: Session, play_id: string) { }

 // try this one in terms of the players? and with a userid?
 // PUT /play/:playid/players/:userid
 joinGame(sess: Session, invitation_id: string) { }
}

45

Design a RESTful API for Hacker News
What are the URL paths?

How are resources nested?

What are the HTTP methods?

Posting

Commenting

Upvoting Favoriting

Karma Tracking

46

47

Client / Server

HTTP request

process request
& build response

HTTP response

•
•
•
•
•
•

•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

This interface
requires design

URLs requests responses

48

Node.js and Express.js

49

JavaScript is (as you know) single-threaded
At the core of the JS runtime is the event queue, a �rst-in-�rst-out queue
that stores events that have arrived from various sources, including:

HTTP requests
File I/O
Timers

This queue is serviced by an event loop that repeatedly checks the queue
for the next event and calls the event’s associated handler function

While our code is running, the event loop is not processing events! It will
not run until control returns to the runtime by...

returning to the top of call stack
giving up control in a (non-�rst) await

51

Dealing with asynchrony
Callbacks and Promises are our tools for asynchronous computation

Expect to use Promises and async / await extensively

To review, please revisit the 6.102 readings at web.mit.edu/6.102/

14: Concurrency gives an overview of concurrency
15: Promises introduces Promises and async / await
16: Mutual Exclusion discusses hazards like race conditions and deadlock
17: Callbacks & GUIs discusses callbacks and the event loop
18: Message-Passing

 & Networking
introduces the basics of client/server web applications

52

Today
RESTful API design

HTTP
URLs
Data safety

Preparing for implementation in Node.js

Looking ahead
Reactive frameworks
User interface design

53

