6.1040: Software Design

Service Design

Arvind Satyanarayan & Max Goldman

with material by Daniel Jackson

Fall ‘24

Server

e M- <

BLUEbikes

HTTP request

This interface

requires design process request

: & build response
> URLs > requests > responses

HTTP résponse

3
+

G o

ese M- < www.puzzmo.com/today

Pitch: social puzzle gaming
with leaderboards (for friendly competition)
and collaborative play (for friendly cooperation) oE T

solved today's Flipart in 14s using

Q 22 rotations.

September 27

() solved today's Bonus Flipart in .
B 27s using 31 rotations. H Fllpa‘rt
@ ® solved today's Typeshift in 27s. H Blg art

'V Show more E m Flipart 884

[]
Clubs .

Flipart

Cool Kids Club — 11,042pts

He e @ [& [Eo]

2 Really [0Q1 10 iE1| Chess

4 Really Bad Chess

wa 2 \ﬁ-\é 644 N]
______ -ac. S
282 aes

M ‘ Experimental
ReaIIyBadChess \ = Wordbind ass

&\\\\\\ SAN NN ARNA UN « A

Pitch: social puzzle gaming
with leaderboards (for friendly competition)
and collaborative play (for friendly cooperation)

A question: is inviting a concept,
or an action in another concept?

eoe M- <

P“ zzm by Orta Therox
& Zach Gage

+ September 27

Flipart...

14, Correct: 9/9

www.puzzmo.comjplay/flip-art/2xb2526t1

Search users

G
+

Eﬂ Instructions

Puzzle Complete

Total solves: 159

Recover your 84 game streak (+7)

&1 Inviting

=5 Alice
Do you want to do the cross

by playing 6 more days in a row

Highscore

3,132y~

Fewest rotations

14 rotates v~

Fastest win

00:10 ~v+v

Friends rank #2

Friends rank #2

Next up: Bigart

= Play again

() Shout your success!

% View leaderboards

Friending

Chatting

@ Elliot

Friends

word puz

Clubs

6 o

Invite

le?

10

Puzzmo

concept Friending [User]
purpose ...
principle ...

state
friends: User - set User

actions
friend (a: User, b: User)
a.friends+=b; b.friends +=a
—or-
add (a, b) and (b, a) to friends

OV

other actions...

concept Inviting [User]
purpose ...
principle ...

state

invites: set Invitation
from: invites > User
to: invites = User

actions
invite (s: User, r: User, out inv: Invitation)
invites +=inv;inv.from:=s;invto:=r

accept (r: User, inv: Invitation, out s: User)
invto==r;s:=inv.from;invites -=inv

other actions...

Example: concept Inviting

16

concept Authenticating
__abbreviated from "Concept sync" tutorial!__
purpose: ... principle:
state:
registered: set User

username, password: registered -> one String

actions:

register(un: String, pw: String, out user: User)
un ; user.password
authenticate(un: String, pw: String, out user: User)

require user.username == un and user.password == pw

registered += user ; user.username :=

concept Sessioning [User]
__abbreviated from "Concept sync" tutorial!__
purpose: ... principle:
state:
active: set Session
user: active -> one User

actions:
start(user: User, out session: Session)
session.user := user
getUser(session: Session, out user: User)
user := session.user

concept Friending [User]

purpose: ... principle:
state:

friends: User -> set User
actions:

friend(a: User, b: User)
require (a, b) not in friends
a.friends += b ; b.friends += a
assertFriends(a: User, b: User)
require (a, b) in friends

concept Playing
purpose: ... principle:
state:

Play ...
actions:

concept Inviting [User, Event]
purpose: ... principle:
state:
invites: set Invitation
from, to: invites -> one User
for: invites -> one Event

actions:

invite(sender: User, recipient: User, event: Event, out inv: Invitation)
invites += inv ; inv.from := sender ; inv.to := recipient
inv.for := event

accept(recipient: User, inv: Invitation, out sender: User, out event: Event
require inv.to == recipient
invites -= inv ; sender := inv.from
event := inv.for

app Puzzmo

include Authenticating as Auth

let User = Auth.User

include Sessioning [User]

include Playing

let Play = Playing.Play

include Friending [User]

include Inviting [User, none] as InvF
include Inviting [User, Play] as InvP

sync __inviteToFriend(from: User, to: User, out invite: InvF.Invitation)__
InvF.invite(from, to, none, invite)

sync __friend(to: User, invite: InvF.Invitation)__
InvF.accept(to, invite, from, none)
Friending.friend(to, from)

sync __inviteToPlay(from: User, to: User, play: Play, out invite: InvP.Invitat]

Friending.assertFriends(from, to)

InvP.invite(from, to, play, invite)

sync __joinGame(to: User, invite: InvP.Invitation)__
InvP.accept(to, invite, from, play)
Playing.SOMETHING (play)

Puzzmo Whie »
Zoag,

° 0]
Dependencies Data Models
conceptsintheapp sets & relations in the state

™
S .. &
Chatting & Invitation & friends
N 7\ User
l from to
! |
Friending Inviting M2
l User User
_ _ >/ N\
Auth-ing Playing username password
N
Strin '/\J‘\Qo
il B
?\

A|>|B| appincluding A must also include B T(>|U| relation fromtypeTtotypeU |V generi1c8

e M- <

BLUEbikes

Server

HTTP request

This interface

requires design process request

: & build response
> URLs > requests > responses

HTTP résponse

19

IP addresses

Web Browser
gt

104.244.42.193

Go to IP address directly?

172.217.10.78

yA®

URLs: Uniform Resource Locators

protocol host path
https://61040-forum.csail.mit.edu/t/class-spotify-

playlist/112?sort=score&status=all#footer-buttons
query fragment

21

Usinga URL

Web Browser

(@ Coto URL

host path query
61040-forum.csail.mit.edu/t/class-spotify-playlist/112?so rt=score&status=alzl2

DNS lookup

® Look up domain name

DNS

Web‘ Erowser ® Resolve to IP address

@ Coto URL

128.52.130.153 E
.
host

61040-forum.csail.mitedu

25

“The two hardest problems in CS are:
DNS (i) cache invalidation,

(ii) naming things, and

(iii) off by one errors”

HTTP request

® Look up domain name

| Web‘ Browser ® Resolve to IP address

(@ Goto URL

Parse response
& render page @ HTTP request

< ® Route the request
@ HTTP response ® Process request —
& build response
128.52.130.153 G s
-

host path query
61 o4o—forum.csaiI.mit.edu/t/class—spotify—pIayIist/112?sort=score&status=al3lo

HTTP methods

GET url

- GET https://
< 200 <lots of html >

POST url + body and PUT url+ body

- POST https://
body § "bookmarkable_id":148}%
<& 200 3§ "success": "OK", "id":7%t¢

DELETE url

> DELETE https://
< 200 3 "success": "OK"?

...and several others

21

Early web service URLs

X Inconsistent: different APIs might use different
path and paramter conventions, and individual
APls might be internally inconsistent

X Difficult to maintain and extend (for developers)

X Not easily discoverable or recognizable (for users)

32

REST: Representational State Transfer

(Just some highlights!)

Client/server architecture

A protocol over HTTP defines the interface between client & server

Stateless

Server does not store state for individual clients: each request is self-contained

Representations

Resources are identified by URLs
Resources have representations in the protocol, transfered back and forth
Protocol reps are not necessarily stored reps (good old rep. independence)

Protocol reps include the information a client needs to make further requests,
e.g. to update an entity, find related entities, etc.

22

RESTful

"Applying verbs to nouns" Profile page:

Profile picture:
Data structure:

Collections:

Instances:

URL paths to identify resources (nouns)

Use related paths to identify different representations
Use hierarchy to indicate structure

37

RESTful

"Applying verbs to nouns" Profile page:
Profile picture:
Create: POST D
: ata structure:
body { "type":"pin", ...%
Read: GET Collections:
Update: PUT
body § "text": "1 Instances:

Delete: DELETE

URL paths to identify resources (nouns)

Use related paths to identify different representations

_ e Consistency
Use hierarchy to indicate structure

and data safet

HTTP methods for different actions (verbs) on the resource

38

HTTP methods and data safety

URL paths to identify resources (nouns)
HTTP methods for different actions (verbs) on the resource

Create: POST
Read: GET
Update: PUT
Delete: DELETE

Safe methods do not change the resource

ldempotent methods can be called multiple
times with the same effect as calling once

Method
GET
POST
PUT
DELETE

Idempotent
v

X
v
v

42

HTTP methods and data safety

URL paths to identify resources (nouns)
HTTP methods for different actions (verbs) on the resource

Create: POST /people/axrvind/flair
Read: GET /people/arvind

Update: PUT /people/arvind/flair/5
Delete: DELETE /people/arvind/ flair/10

Safe methods do not change the resource

PUT
DELETE

ldempotent methods can be called multiple
times with the same effect as calling once

G
+

G o

roe M- < www.puzzmo.comjplay/flip-art/2xb2526t1

P ZZM by Orta Therox
& Zach Gage

- September 27 Daily Score: 3,132 00:10 T—

Design a RESTful API
for Puzzmo & “{Inviting] =

Puzzle Complete &

Do you want to do the crossword puzzle?

@

What are the URL paths? Total solves: 159 o

Recover your 84 game streak (+7) D Mark
by playing 6 more days in a row

How are resources nested? @ et

Highscore Friends rank #2
3,132 e
What are the HTTP methods? o o

14 rotates v

Fastest win

14, Correct: 9/9 00:10 v~

Next up: Bigart

= Play again

() Shout your success!

#% View leaderboards Fri e n di n g Friends Clubs

44

type Session = void;
export class Routes {

// POST /friends/invitations/:userid
inviteToFriend(sess: Session, to_user_id: string) § %

// GET /friends/invitations
listFriendInvitations(sess: Session) §

// POST /friends/:inviteid
// -or- maybe better if it was a userid in the URL?
makeFriend(sess: Session, invitation_id: string) { %

// GET /friends
allMyFriends(sess: Session) { 1

// POST /play/:playid/invitation/:userid
inviteToPlay(sess: Session, play_id: string) { %

// try this one in terms of the players? and with a userid?
// PUT /play/:playid/players/:userid
joinGame (sess: Session, invitation_id: string) {

Design a RESTful API for Hacker News

What are the URL paths?
How are resources nested?

What are the HTTP methods?

A Jackson structured programming (wikipedia.org) Posting
106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

Upvoting | Favoriting ‘

A danielnicholas 63 days ago [-]

If you want an intro to JSP, you m user: danielnicholas Jackson festschrift
in 2009 created: 63 days ago
' mEs 13 Karma Tracking
For those who don't know JSP, I'd about:
-
- There's a class of proaramming | :;mTT:Sr:ﬁn addresses this class,
b| . e only on i :
Commenting favorites _ ,,
- ypal probl d just recognizing 46

them helps.

X Developer Platform = i ta b.l eau O Search
e
«—Tableau Help > Tableau REST APl Help > API Reference—All Methods
Twitter Twitter API: Twitter API: Twitter
API v2 Enterprise Standard v1.1 Ads API
— (® INTHIS ARTICLE

TWitter API v2 APl Method Categorles qUaltriCS.m Instructions Guides ~ APIReference SDKs Search

Tweets The following table lists the Tableau Server REST API met & surveys CRUD AP v
table also indicates which methods can be used with Tabl¢, ~ survers = Surveys CRUD API
Bookmarks Get survey
Update Surve PUT e
+ DELETE /2/users/:id/bookmarks/:tweet_id Analytics Extensions Settings Methods " ’
« GET /2/users/:id/bookmarks RERDEEY et
« POST /2/users/:id/bookmarks U REYE s X) - v
Ask Data Lens Methods Import survey ::"j‘f"a" ““:i"‘: i A I”l’::’)")
e t t: t : htty
Flltered stream Shar Survey . ashington, ‘ Tea ata Center (previously
San Jose, California Data Center (previously AZ): https:
« GET /2/tweets/search/stream Authentication Methods Sl Tt et Ik v European Union Data Center (previously EU2 or EU): ht
| « GET /2/tweets/search/stream/rules Survey Quotas > London, United Kingdom Data Center: http
| « POST /2/tweets/search/stream/rules Schemas > Sydney, Australia Data Center (previously AU
€ . . Connected App Methods & Ticketing API > Singapore Data Center: ht
; Hlde replles & Transaction Batches > Tokyo, Japan Data Center: http:
. PUT/2/tW€et5/|d/h|dden COﬂteﬂt E}(plOrathl’] Methods & Users - US Government Data Center: ht
Mock Server: https
B | Users v
Likes e .
| . . ist Users Gl
‘ Dashboard Extensions Settings Methods seeuit
« DELETE /2/users/:id/likes/:tweet_id z Create User POST b
« DELETE /2/users/:id/likes/:tweet_id | CotlUner bt ~ APIKey
* GET /,Q/tweets{:I?./“km&users Data Sources Methods ‘ Delete User UELERE This is a schema for x-api-token header authentication.
- 1 Update User B An API key is a token that you provide when making AP calls. Include the
EXtraCt an d En c ryptl on M et hOdS Who Am | GET token in a header parameter called X-API-TOKEN
Users APl Tokens > Example: X-API-TOKEN: 123

Schemas > » OAuth 2.0 47
' & WhatsApp Distributions >

e M- <

BLUEbikes

Server

HTTP request

This interface

requires design process request

: & build response
> URLs > requests > responses

HTTP résponse

48

Node.js and Express.js

49

JavaScript is (as you know) single-threaded

At the core of the]S runtime is the event queue, a first-in-first-out queue
that stores events that have arrived from various sources, including:
HTTP requests
File 1/O
Timers

This queue is serviced by an event loop that repeatedly checks the queue
for the next event and calls the event’s associated handler function

While our code is running, the event loop is not processing events! It will
not run until control returns to the runtime by...

returning to the top of call stack
giving up control in a (non-first) await

51

Dealing with asynchrony

Callbacks and Promises are our tools for asynchronous computation
Expect to use Promises and async/await extensively

To review, please revisit the 6.102 readings at web.mit.edu/6.102/

14: Concurrency gives an overview of concurrency

15: Promises introduces Promises and async/await

16: Mutual Exclusion discusses hazards like race conditions and deadlock
17: Callbacks & GUIs discusses callbacks and the event loop

18: Message-Passing introduces the basics of client/server web applications
& Networking

52

Today

RESTful APl design

HTTP
URLs
Data safety

Preparing forimplementation in Node.js

Looking ahead

Reactive frameworks
User interface design

53

