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Service Design
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Pitch: social puzzle gaming
with leaderboards (for friendly competition)
and collaborative play (for friendly cooperation)

A question: is inviting a concept,
or an action in another concept?
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Puzzmo

concept Friending [User]
purpose ...
principle ...

state
friends: User - set User

actions
friend (a: User, b: User)
a.friends+=b; b.friends +=a
—or-
add (a, b) and (b, a) to friends

_OV_

other actions...

concept Inviting [User]
purpose ...
principle ...

state

invites: set Invitation
from: invites > User
to: invites = User

actions
invite (s: User, r: User, out inv: Invitation)
invites +=inv;inv.from:=s;invto:=r

accept (r: User, inv: Invitation, out s: User)
invto==r;s:=inv.from;invites -=inv

other actions...



Example: concept Inviting
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# concept Authenticating
__abbreviated from "Concept sync" tutorial!__
purpose: ... principle:
state:
registered: set User

username, password: registered -> one String

actions:

register(un: String, pw: String, out user: User)
un ; user.password
authenticate(un: String, pw: String, out user: User)

require user.username == un and user.password == pw

registered += user ; user.username :=

# concept Sessioning [User]
__abbreviated from "Concept sync" tutorial!__
purpose: ... principle:
state:
active: set Session
user: active -> one User

actions:
start(user: User, out session: Session)
session.user := user
getUser(session: Session, out user: User)
user := session.user

# concept Friending [User]

purpose: ... principle:
state:

friends: User -> set User
actions:

friend(a: User, b: User)
require (a, b) not in friends
a.friends += b ; b.friends += a
assertFriends(a: User, b: User)
require (a, b) in friends

# concept Playing
purpose: ... principle:
state:

Play ...
actions:

# concept Inviting [User, Event]
purpose: ... principle:
state:
invites: set Invitation
from, to: invites -> one User
for: invites -> one Event

actions:

invite(sender: User, recipient: User, event: Event, out inv: Invitation)
invites += inv ; inv.from := sender ; inv.to := recipient
inv.for := event

accept(recipient: User, inv: Invitation, out sender: User, out event: Event
require inv.to == recipient
invites -= inv ; sender := inv.from
event := inv.for

# app Puzzmo

include Authenticating as Auth

let User = Auth.User

include Sessioning [User]

include Playing

let Play = Playing.Play

include Friending [User]

include Inviting [User, none] as InvF
include Inviting [User, Play] as InvP

sync __inviteToFriend(from: User, to: User, out invite: InvF.Invitation)__
InvF.invite(from, to, none, invite)

sync __friend(to: User, invite: InvF.Invitation)__
InvF.accept(to, invite, from, none)
Friending.friend(to, from)

sync __inviteToPlay(from: User, to: User, play: Play, out invite: InvP.Invitat]

Friending.assertFriends(from, to)

InvP.invite(from, to, play, invite)

sync __joinGame(to: User, invite: InvP.Invitation)__
InvP.accept(to, invite, from, play)
Playing.SOMETHING (play)
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IP addresses

Web Browser
gt

104.244.42.193

Go to IP address directly?

172.217.10.78

yA®



URLs: Uniform Resource Locators

protocol host path
https://61040-forum.csail.mit.edu/t/class-spotify-

playlist/112?sort=score&status=all#footer-buttons
query fragment
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Usinga URL

Web Browser

(@ Coto URL

host path query
61040-forum.csail.mit.edu/t/class-spotify-playlist/112?so rt=score&status=alzl2



DNS lookup

® Look up domain name

DNS

Web‘ Erowser ® Resolve to IP address

@ Coto URL

128.52.130.153 E
.
host

61040-forum.csail.mitedu
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“The two hardest problems in CS are:
DNS (i) cache invalidation,

(ii) naming things, and

(iii) off by one errors”

HTTP request

® Look up domain name

| Web‘ Browser ® Resolve to IP address

(@ Goto URL

Parse response
& render page @ HTTP request

< ® Route the request
@ HTTP response ® Process request —
& build response
128.52.130.153 G s
-

host path query
61 o4o—forum.csaiI.mit.edu/t/class—spotify—pIayIist/112?sort=score&status=al3lo




HTTP methods

GET url

- GET https://
< 200 <lots of html >

POST url + body and PUT url+ body

- POST https://
body § "bookmarkable_id":148}%
<& 200 3§ "success": "OK", "id":7%t¢

DELETE url

> DELETE https://
< 200 3 "success": "OK"?

...and several others
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Early web service URLs

X Inconsistent: different APIs might use different
path and paramter conventions, and individual
APls might be internally inconsistent

X Difficult to maintain and extend (for developers)

X Not easily discoverable or recognizable (for users)
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REST: Representational State Transfer

(Just some highlights!)

Client/server architecture

A protocol over HTTP defines the interface between client & server

Stateless

Server does not store state for individual clients: each request is self-contained

Representations

Resources are identified by URLs
Resources have representations in the protocol, transfered back and forth
Protocol reps are not necessarily stored reps (good old rep. independence)

Protocol reps include the information a client needs to make further requests,
e.g. to update an entity, find related entities, etc.
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RESTful

"Applying verbs to nouns" Profile page:

Profile picture:
Data structure:

Collections:

Instances:

URL paths to identify resources (nouns)

Use related paths to identify different representations
Use hierarchy to indicate structure
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RESTful

"Applying verbs to nouns" Profile page:
Profile picture:
Create: POST D
: ata structure:
body { "type":"pin", ...%
Read: GET Collections:
Update: PUT
body § "text": "1 Instances:

Delete: DELETE

URL paths to identify resources (nouns)

Use related paths to identify different representations

_ e Consistency
Use hierarchy to indicate structure

and data safet

HTTP methods for different actions (verbs) on the resource
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HTTP methods and data safety

URL paths to identify resources (nouns)
HTTP methods for different actions (verbs) on the resource

Create: POST
Read: GET
Update: PUT
Delete: DELETE

Safe methods do not change the resource

ldempotent methods can be called multiple
times with the same effect as calling once

Method
GET
POST
PUT
DELETE

Idempotent
v

X
v
v
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HTTP methods and data safety

URL paths to identify resources (nouns)
HTTP methods for different actions (verbs) on the resource

Create: POST /people/axrvind/flair
Read: GET /people/arvind

Update: PUT /people/arvind/flair/5
Delete: DELETE /people/arvind/ flair/10

Safe methods do not change the resource

PUT
DELETE

ldempotent methods can be called multiple
times with the same effect as calling once
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type Session = void;
export class Routes {

// POST /friends/invitations/:userid
inviteToFriend(sess: Session, to_user_id: string) § %

// GET /friends/invitations
listFriendInvitations(sess: Session) §

// POST /friends/:inviteid
// -or- maybe better if it was a userid in the URL?
makeFriend(sess: Session, invitation_id: string) { %

// GET /friends
allMyFriends(sess: Session) { 1

// POST /play/:playid/invitation/:userid
inviteToPlay(sess: Session, play_id: string) { %

// try this one in terms of the players? and with a userid?
// PUT /play/:playid/players/:userid
joinGame (sess: Session, invitation_id: string) {



Design a RESTful API for Hacker News

What are the URL paths?
How are resources nested?

What are the HTTP methods?

A Jackson structured programming (wikipedia.org) Posting
106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

Upvoting | Favoriting ‘

A danielnicholas 63 days ago [-]

If you want an intro to JSP, you m user: danielnicholas Jackson festschrift
in 2009 created: 63 days ago
' mEs 13 Karma Tracking
For those who don't know JSP, I'd about:
-
- There's a class of proaramming | :;mTT:Sr:ﬁn addresses this class,
b| . e only on i :
Commenting favorites _ ,,
- ypal probl d just recognizing 46
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Node.js and Express.js
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JavaScript is (as you know) single-threaded

At the core of the ]S runtime is the event queue, a first-in-first-out queue
that stores events that have arrived from various sources, including:
HTTP requests
File 1/O
Timers

This queue is serviced by an event loop that repeatedly checks the queue
for the next event and calls the event’s associated handler function

While our code is running, the event loop is not processing events! It will
not run until control returns to the runtime by...

returning to the top of call stack
giving up control in a (non-first) await
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Dealing with asynchrony

Callbacks and Promises are our tools for asynchronous computation
Expect to use Promises and async/await extensively

To review, please revisit the 6.102 readings at web.mit.edu/6.102/

14: Concurrency gives an overview of concurrency

15: Promises introduces Promises and async/await

16: Mutual Exclusion discusses hazards like race conditions and deadlock
17: Callbacks & GUIs discusses callbacks and the event loop

18: Message-Passing introduces the basics of client/server web applications
& Networking
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Today

RESTful APl design

HTTP
URLs
Data safety

Preparing forimplementation in Node.js

Looking ahead

Reactive frameworks
User interface design
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