
6.1040: So�tware Design

Data Design
Arvind Satyanarayan & Max Goldman
with material by Daniel Jackson

Fall ’24

1

Client / Server

HTTP request

process request
& build response

HTTP response

application server

database server
2

Today
 Di�ferent database models

Classical data modeling

Concept data modeling

 Relational state

Implementation considerations

3

4

Object model
Application root references
collections of class instances
that describe primitive data

 Quick to prototype

 Easy to experiment with
 arbitrary data structures

 Refactoring is di��cult

 No advanced querying:
 only iterate over collections,
 follow references

5

Relational model
Relations of
(a.k.a. tables)

 attributes and
(a.k.a. columns)

 tuples
(a.k.a. rows)

 Relational theory gives a clear path to
 separation of concerns with normalization

 Standardized query language (SQL)
 regardless of backend engine
 (MySQL, PostgreSQL, SQLite, ...)

 Many decades of research into performance
 and robustness (indexing, transactions,
 integrity, ...)

 Horizontal scaling can be a challenge

 If you like objects, there are no objects* here
6

SQL:
Structured Query Language
SELECT title, name, location, time
FROM showings
 JOIN theaters ON (showings.theater = theaters.id)
 JOIN movies ON (showings.movie = movies.id)
WHERE movies.genre = "RomCom";

JOIN is (a more �lexible version of) the same
relational join operator we discussed earlier

WHERE is a �lter

SELECT is a map (in this case, a projection)
7

Document model
Collections of nested documents

 Quick to prototype with JSON objects

 Easy to experiment with arbitrary data structures

 Pattern matching by document structure

 Horizontal performance (many less-powerful servers
 instead of one very powerful server)

 No standardized query language

 To query across collections, either: use a DB-speci�c
 API, or write code at the application level

 With embedded documents, easy to make poor
 design decisions 8

NoSQL:
Not SQL -or- Not Only SQL
Document databases like MongoDB

also

Graph databases

Key-value databases

and others

9

MongoDB
a NoSQL document database

10

MongoDB “CRUD” operations
Create
db.showings.insertOne({...})
db.showings.insertMany([{...}, {...}, ...])

{
 "_id": new ObjectId(),
 "title": "Crazy Rich Asians",
 "genre": "RomCom",
 "showtime": new Date("2022-10-07 15:30"),
 "theater": {
 "name": "AMC",
 "location": "Boston Common"
 }
}

Documents are JSON-like
structures (BSON) that support
some additional datatypes,
e.g. Date

Every document has a unique _id
of type ObjectId generated by
MongoDB

11

MongoDB “CRUD” operations
Create
insertOne({...})
insertMany([{...}, {...}, ...])

Read
db.showings.findOne({...})
db.showings.find({...})

{ "title": "Oppenheimer" }

{ "theater.name": "AMC" }

{
 "title": "Oppenheimer",
 "theater.name": "AMC"
}

Query �lters specify the
document-matching predicate
for a read, update, or delete

{ "$or": [
 { "title": "Oppenheimer" },
 { "theater.name": "AMC" }
] }

{ "theater.name": {
 "$in": ["AMC", "Regal"]
} }

{ "showtime": {
 "$lte": new Date("2024-09-25")
} }

MongoDB “CRUD” operations
Create
insertOne({...})
insertMany([{...}, {...}, ...])

Read
findOne({...})
find({...})

Update
updateOne({...}, {"$set": {...}})
updateMany({...}, {"$set": {...}})
replaceOne({...}, {...})

Updates specify �elds to change

Delete
deleteOne({...})
deleteMany({...})

13

Multiple collections vs. embedded documents
db.theaters.insertOne({
 "_id": <1>,
 "name": "AMC", ...
});

db.movies.insertOne({
 "_id": <3>,
 "title": "Oppenheimer", ...
});

db.showings.insertOne({
 "_id": <5>,
 "theater": <1>,
 "movie": <3>,
 "showtime": new Date(...)
});

vs.

db.movies.insertOne({
 "_id": <7>,
 "title": "Oppenheimer",
 "showings": [
 {
 "theater": {"name":"AMC", ...},
 "showtime": new Date(...)
 }
]
});

14

Multiple collections vs. embedded documents
const amcs = db.theaters.find({
 "name": "AMC"
});
const oids = amcs.map(t => t._id);
const movies = db.movies.find({
 "theater": { "$in": oids }
});

-or-

Write a MongoDB aggregation pipeline...
stages in the pipeline can perform
map- and �lter-like operations

a $lookup stage performs a join!
(recall “not only SQL”)

const movies = db.movies.find({
 "theater.name": "AMC"
});

vs.

Some questions to ask:

�. How many documents are you embedding
in a single parent?

�. Does the embedded document relate to
other documents?

�. Will you have a need for the embedded
document without the parent, or vice versa? 15

 Three database models
Object oriented model: references

Relational model: tables of tuples

Document collection model: (nested) documents

16

Designing a database: the classic approach
Step 1: identify entities and relationships

... and draw a graph

Boxes are sets, arrows are relations

Simple semantics

Representation-independent

Relations are predicates on 2-tuples
e.g. (Barbie, Fantasy) in genre

Diagram shows us possible navigations
... but!

17

Designing a database: the classic approach
A common confusion: arrow direction

Arrow direction is
NOT navigation and
NOT containment

Can switch direction,
so long as we interpret
the relation consistently

Matters for homogeneous
relations where we can
easily interpret wrong:

(alice, bob) in invited

Did Alice invite Bob,
or did Bob invite Alice? 18

Designing a database: the classic approach
Step 2: add multiplicities

Mutiplicities tell you:
how many on that end of the arrow?

≥ � set, the default
≥ � some, +
≤ � opt, lone, ?
= � one, !

(Many other notations, see xkcd.com/927)

19

Designing a database: the classic approach
Step 3: transform to... a relational database schema

movies?
id title showings?

1 Crazy Rich Asians 42, 43

Constraint: no set-valued columns*
21

Designing a database: the classic approach
Step 3: transform to... a relational database schema

CREATE TABLE movies
 (id int, title text, genre text);
CREATE TABLE showings
 (id int, movie int, screen int,
 theater int, time timestamp);

Constraint: no set-valued columns*
22

Designing a database: the classic approach
Step 3: transform to... a relational database schema

movies
title genre

1 Crazy Rich Asians RomCom

2 Barbie Fantasy

id

showings
movie screen theater time

42 1 2 35 3:00pm

43 1 1 23 7:00pm

id

Constraint: no set-valued columns*
24

Designing a database: the classic approach
Step 3: transform to... an object oriented schema

class Movie {
 title: string;
 genre: Genre;
 showings: Array<Showing>;
}

class Showing {
 screen: number;
 theater: Theater;
 time: Date;
}

Constraint: queries must follow �elds
25

Designing a database: the classic approach
Step 3: transform to... an object oriented schema

class Movie {
 title: string;
 genre: Genre;
 showings: Array<Showing>;
}

class Showing {
 screen: number;
 theater: Theater;
 time: Date;
}

Constraint: queries must follow �elds

Map<number,
 Array<Showing>>;

25

Designing a database: the classic approach
Step 3: transform to... a document collection schema

In most NoSQL databases, collections
do not have a �xed schema!

We will use TypeScript interfaces

interface Showing {
 _id: ObjectId,
 title: string,
 time: Date,
 ...
}

Constraint: if mutable, application
must keep embedded docs consistent 26

Designing a database: the classic approach
Step 3: transform to... a document collection schema

showings
id 1

title "Crazy Rich Asians"

time 7:00pm

genre "RomCom"

screen 2

theater
name "AMC"

address "401 Park Drive"

Constraint: if mutable, application
must keep embedded docs consistent 27

Designing a database
Schema design considerations
What is possible to represent?

e.g. in a relational database with scalar �elds, is the multiplicity correct?

What is the cost of queries?
e.g. cost of relational joins mitigated by indexes

What is the cost of updates?
e.g. locking a table/object/document to prevent race conditions,

or keeping embedded documents consistent

28

Mutiplicities matter
What are these multiplicities?

≥ � set, the default
≥ � some, +
≤ � opt, lone, ?
= � one, !

29

Mutiplicities matter
What are these multiplicities?

≥ � set, the default
≥ � some, +
≤ � opt, lone, ?
= � one, !

29

Challenges in the classic approach

What data go in the model?
Step 1 was to draw this entire graph
Where do we start?
Where do we stop?

Where is the modularity?

How can we reuse modeling
within or across systems?

30

Designing a database: the concept approach
Step 1: identify the concepts

31

Designing a database: the concept approach
Reviewing comparables can help...

32

Designing a database: the concept approach
Starting simple -but- modular

concept Movies
purpose provide info about all movies
state
genres: Movie set Genre
title: Movie one String
year: Movie one Year
remakeOf, sequelTo: Movie opt Movie

concept Showings [,]
purpose provide info on current movie showings
state
movie: Showing one Movie
theater: Showing one Theater
time: Showing one Date
screen: Showing one String

Movie Theater

concept Businesses [Location]
purpose provide info on places of business
state
name: Business one String
address: Business one Address
website: Business one URL
location: Business one Location

concept Showings [Movie, Theater]
purpose provide info on current movie showings
state
movie: Showing one Movie
theater: Showing one Theater
time: Showing one Date
screen: Showing one String

reminder: generic parameters

33

Designing a database: the concept approach
Identifying stakeholders and thinking about operational principles & actions

concept Posting
principle a�ter making a post,

 that post is available to other users

concept Movies
principle a�ter a movie... exists?,

 users can �nd it,
 and related movies

At order one new movie per day, handled internally?
What actions and state?

concept Showings At order ten thousand per day (US), ...?

concept Businesses Maybe only one update per day, but
across order one thousand theaters, ...?

concept Verifying concept Crowdsourcing concept Scraping
34

Designing a database: the concept approach
Step 1: we now have entities and relationships for each concept

concept Movies
state
genres: Movie set Genre
title: Movie one String
year: Movie one Year
remakeOf, sequelTo: Movie opt Movie

concept Showings [Movie, Theater]
state
movie: Showing one Movie
theater: Showing one Theater
time: Showing one Date
screen: Showing one String

concept Businesses [Location]
state
name: Business one String
address: Business one Address
website: Business one URL
location: Business one Location

35

Designing a database: the concept approach
Step 2: compose a global data model

concept Movies concept Showings concept Businesses

app M104vies
include Movies, Showings [Movies.Movie, Businesses.Business], Businesses [ ... ]

36

What about locations?

concept Geo Locations [POI]
purpose �nd points-of-interest by location

state
location: POI opt Location

actions
locate (addr: String, out loc: Location)
add (point: POI, loc: Location)
�ndNearby (loc: Location, out points: set POI)

Actual representation will be a
data structure that enables an
e��cient algorithm for �ndNearby

37

Designing a database: the concept approach
Step 3: transform to... e.g. a MongoDB schema

How many collections?

What primitive types?

38

Designing a database: the concept approach
Step 3: transform to... e.g. a MongoDB schema

interface Movie {
 _id: ObjectId
 title: string
 genres: string[]
 year: number
}

interface Showing {
 _id: ObjectId
 movie: ObjectId
 time: Date
 screen: string
 theater: ObjectId
}

interface Business {
 _id: ObjectId
 name: string
 website: string
 location: ObjectId
 address: string

} 39

Designing a database: the concept approach
Step 3: transform to... e.g. a MongoDB schema

interface MovieShowings {
 _id: ObjectId
 movie: ObjectId
 showings: [
 { theater:ObjectId, screen:string, time:Date }, ...
]
}

interface Movie {
 _id: ObjectId
 title: string
 genres: string[]
 year: number
}

interface Business {
 _id: ObjectId
 name: string
 website: string
 location: ObjectId
 address: string

}
bene�ts and drawbacks?

40

Designing a database: the concept approach
Step 3: transform to... e.g. a MongoDB schema

interface TheaterMovieShowings {
 _id: ObjectId
 theater: ObjectId
 movie: ObjectId
 showings: [
 { screen:string, time:Date }, ...
]
}

interface Movie {
 _id: ObjectId
 title: string
 genres: string[]
 year: number
}

interface Business {
 _id: ObjectId
 name: string
 website: string
 location: ObjectId
 address: string

}
bene�ts and drawbacks?

41

Today
Database models

object-oriented relational document collection

Abstract data models
relations & sets in one global model

Concept-driven data models
data for separable concepts in a composed model

Implementation in MongoDB

Looking ahead
Designing services
Reactive frameworks!

42

