6.1040: Software Design

Concept Basics

Arvind Satyanarayan & Max Goldman

with material by Daniel Jackson

Fall ‘24

Levels of design

LI

physical

color, size, layout,
type, touch, sound

linguistic

icons, labels, tooltips,
site structure

O

conceptual

semantics, actions,
data model, purpose

software concepts
QO Semantic
Purposive
53 Modular

Diverging and converging

W‘%ék

&\

\/\

)

umplemented

eoe M+ < & www.yellkey.com [ﬂ] + O O

yellkey: url to common word shortener.

yellkey

enter url and length of time for key to exist.

{ http:/web.mit.edu/|]
1hour s
generate yellkey

IMPORTANT:
yellkeys are NOT private. anyone can access your URL if they want to.
please be careful what links you choose to share through yellkey.

try out our yellkey browser extensions for
Google Chrome, Moxzilla Firefox, and Apple Safari
from sarah lim and andrew finke

made with Q by delta lab 4

a very big thank you to chad etzel, the creator of shoutkey and inspiration for yellkey.

eoe M+ < @ wwwyellkey.com/generateKey el +)

yellkey: url to common word shortener.

yellkey

enter url and length of time for key to exist.

full url(e.g. http://www.google.com)

5 minutes v

generate yellkey

your key is: hack.

go to www.yellkey.com/hack to use.

IMPORTANT:
yellkeys are NOT private. anyone can access your URL if they want to.
please be careful what links you choose to share through yellkey.

try out our ye lkey browser exten5|ons for

concept Yellkey

purpose| whatis it for?

principle

a small story that explains how it works

concept Yellkey
purpose shorten URLs to common words

principle
after registering a URL and getting a shorthand for it,
looking up that shorthand will yield the URL, until expiry

actions

what behaviors do users experience?

concept Yellkey

purpose shorten URLs to common words

principle

after registering a URL and getting a shorthand for it,
looking up that shorthand will yield the URL, until expiry

actions

register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)
system expire (out short: String)

concept Yellkey
purpose shorten URLs to common words

principle
after registering a URL u for time t and getting a shorthand s,
looking up s will yield u until the shorthand expires time t later

actions
register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)
system expire (out short: String)

concept Yellkey
purpose shorten URLs to common words

principle
after register (u, t, s) then lookup (s, u) until expire (s)

actions

register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)

system expire (out short: String) treating inputs &
outputs uniformly

10

concept Yellkey
purpose shorten URLs to common words

principle
after register (u, t, s) then lookup (s, u) until expire (s)

state

what must be stored to support the actions?

actions

register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)
system expire (out short: String)

11

concept Yellkey

purpose shorten URLs to common words

principle

after register (u, t, s) then lookup (s, u) until expire (s)

state
const shorthands: set String

used: set String
shortFor: used - one URL
expiry: used - one Date

every String in used is
associated with exactly
one URL & Date

actions

register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)

system expire (out short: String)

12

. ' ience? ...
concept Yellkey actions | what behaviors do users experien

purpose register (url: URL, time: int, out short: String)

shorten URLs to common words piCI(short from the set shorthands- usge
update shortFor so that short - url

principle . update expiry so that short - time sec. after now
after reg'lstermga URLu fortimet add short to used
and getting a shorthand s,
looking up s will yield u until the lookup (short: String, out url: URL)
shorthand expires time t later require short in used | preconditions
urlis the URL associated with short by shortFor
state
const shorthands: set String system expire (out short: String)
used: set String require expiry of short is before now Pos;.
shortFor: used > one URL|invariants | remove short from used CO”diyo
. . Ns
expiry: used - one Date update shortFor and expiry so that short - none

. what must be stored
to support the actions?

13

concept Yellkey

purpose
shorten URLs to common words

principle

after registeringa URLu fortimet
and getting a shorthand s,
looking up s will yield u until the
shorthand expires time t later

state
const shorthands: set String
used: set String
shortFor: used - one URL
expiry: used - one Date

actions
register (url: URL, time: int, out short: String)

shortin shorthands - used
short. shortFor := url

short. expiry :=time sec. after now
used +=short

lookup (short: String, out url: URL)

shortin used
url :=short. shortFor

system expire (out short: String)

short. expiry < now
used -=short

short. shortFor := none
short. expiry := none

14

Relational state

shortFor: String - one URL
shortFor is a binary relation from String to one URL, e.g.

{ ("hack", http://web.mitedu/),
("punt”, https://61040-fa24.github.io/),
("never”, https://www.youtube.com/watch?v=MA_vOYMPNO9c) 1}

Relationaljoin

lookup (short: String, out url: URL)
url :=short. shortFor

("hack”, mitedu),
{("hack")}. {('punt’, 61040), }={(mitedu)}
("never", youtube)

15

Relational state

shortFor: String - one URL
shortFor is a binary relation from String to one URL, e.g.

{ ("hack", http://web.mit.edu/),
("punt”, https://61040-fa24.github.io/),
("never”, https://www.youtube.com/watch?v=MA_vOYMPNO9c) 1}

Relational join Relational update
lookup (short: String, out url: URL) register (url: URL, time: int, out short: String)
url :=short. shortFor e””%g,,tﬁ short. shortFor := url
0/f$

("hack” mitedu), shortFor' =shortFor - (short, x) + (short, url)
{("hack")}. {("punt", 61040), }={(mitedu)} ﬁo/ds Sre

" : “ors, ey,

("never", youtube) *op d'bq/)’s .

Relational state

shortFor: String - one URL
shortFor is a binary relation from String to one URL, e.g.

{ ("hack", http://web.mitedu/),
("punt”, https://61040-fa24.github.io/),
("never”, https://www.youtube.com/watch?v=MA_vOYMPN9c) 1}

Relational join & other operations, e.g.
lookup (short: String, out url: URL) allShorthands (url: URL, out shorts: set String)
url :=short. shortFor shorts := url . ~shortFor «;
| | Mverse ShOI’tFo
("hack" mit.edu), (mitedu, "hack"), ¥
{("hack™)}. {("punt’, 61040), }={(mitedw)} {(mitedu)}.{(61040, "punt”), }={("hack")}
("never", youtube) (youtube, "never")

16

concept Yellkey

purpose
shorten URLs to common words

principle

after registeringa URLu fortimet
and getting a shorthand s,
looking up s will yield u until the
shorthand expires time t later

state
const shorthands: set String
used: set String
shortFor: used > one URL
expiry: used - one Date

actions
register (url: URL, time: int, out short: String)

shortin shorthands - used Alternative design:

short. shortFor := url What if we modified
short. expiry :=time sec. after now register (...) so that it

used +=short replaced any
existing shorthand

for the URL, instead
of adding?

lookup (short: String, out url: URL)

shortin used
url :=short. shortFor

system expire (out short: String)
short. expiry < now
used -=short
short.shortFor:=none
short. expiry := none

17

Something unsatisfying about concept Yellkey

Shortening and Expiring are both
patterns we have seen elsewhere

They can be expressed generically

And we can describe Yellkey as a
combination of Shortening + Expiring

O Semantic

Ly about underlying behavior users experience
Not internals, user-facing

Not Ul, but underlying function

Notjust structure, behavior

Purposive

Ly fulfills an entire user need
Included for a reason
End-to-end, notjust a fragment

53 Modular

Ly mutually independent
Generic (using polymorphic parameters)
Reusable within and across apps

18

A Pattern Language

Towns -Buildings - Construction

Christopher Alexander

Sara Ishikawa - Murray Silverstein
WITH

Max Jacobson -Ingrid Fiksdahl-King
Shlomo Angel

(1977)

The
Timeless Way of
Building

Christopher Alexander

(1979)

19

concept Yellkey

purpose
shorten URLs to common words

principle

after registeringa URL u fortimet
and getting a shorthand s,
looking up s will yield u until the
shorthand expires time t later

state
const shorthands: set String
used: set String
shortFor: used > one URL
expiry: used - one Date

actions
register (url: URL, time: int, out short: String)

shortin shorthands - used
short. shortFor := url

short. expiry :=time sec. after now
used +=short

lookup (short: String, out url: URL)

shortin used
url :=short. shortFor

system expire (out short: String)

short. expiry < now
used -=short

short. shortFor := none
short. expiry := none

20

concept| Shortening |first draft

purpose
provide access via short strings

principle
after registeringa URL u
and getting a shorthand s,

looking up s will yield u until
7?2

state

const shorthands: set String
used: set String
shortFor: used > one URL

actions
register (url: URL, out short: String)

shortin shorthands - used
short. shortFor := url
used +=short

lookup (short: String, out url: URL)

shortin used
url :=short. shortFor

o0

used -=short
short. shortFor:=none

310YS 1n0 3uliolde

Suius

concept Shortening [Target]

purpose
provide access via short strings

principle

after registering a targett
and getting a shorthand s,
looking up s will yield t,
until s is unregistered

state

const shorthands: set String
used: set String
shortFor: used - one Target

actions
register (target: Target, out short: String)

shortin shorthands - used
short.shortFor :=target
used +=short

lookup (short: String, out target: Target)

shortin used
target :=short. shortFor

unregister (short: String)

shortin used
used -=short
short. shortFor:=none

22

concept Shortening [Target] concept Expiring [Resource]
purpose provide access via short strings purpose handle expiration of short-lived resources
principle after registering a target tand getting principle if you allocate a resource r for t seconds,

a shorthand s, looking up s will yield t
state

const shorthands: set String
used: set String
shortFor: used - one Target

actions
register (t: Target, out s: String)
sinshorthands-used:s. shortFor:=t: used +=s

lookup (s: String, out t: Target)
sinused;t:=s.shortFor

unregister (s: String)
sinused:used -=s:s.shortFor:=none

after t seconds the resource expires

state

active: set Resource
expiry: active - one Date

actions
allocate (rsrc: Resource, time: int)

rsrc notin active
active +=rsrc
rsrc.expiry :=time sec. after now

system expire (out rsrc: Resource)

rsrcin active ; rsrc. expiry is before now
active -=rsrc; rsrc.expiry := none

concept Shortening [Target]

purpose provide access via short strings
principle after registering a target t and getting
a shorthand s, looking up s will yield t

state

const shorthands: set String
used: set String
shortFor: used - one Target

actions

register (t: Target, out s: String) «——>

sinshorthands-used:s. shortFor:=t: used +=s

lookup (s: String, out t: Target)
sinused;t:=s.shortFor

«——"
unregister (s: String)

sinused:;used -=s:s.shortFor:=none

concept Expiring [Resource]

purpose handle expiration of short-lived resources
principle if you allocate a resource r for t seconds,
after t seconds the resource expires

state

active: set Resource
expiry: active - one Date

actions

allocate (rsrc: Resource, time: int)

rsrc not in active
active +=rsrc
rsrc.expiry :=time sec. after now

system expire (out rsrc: Resource)

rsrcin active ; rsrc. expiry is before now
active -=rsrc; rsrc. expiry := none

o Vi

Synchronizing concepts to build an app

app Yellkey

include Shortening [URL]
include Expiring [String]

sync register (url: URL, time: int, out short: String)
Shortening.register (url, short)
Expiring.allocate (short, time)

system sync expire (out short: String)

Expiring.expire (short)

Shortening.unregister (short)

sync lookup (short: String, out url: URL)
Shortening.lookup (short, url)

concept Shortening [Target]

purpose provide access via short strings
principle after registering a target t and getting
ashorthands, looking up s will yield t

state

const shorthands: set String
used: set String
shortFor: used > one Target

actions

register (t: Target, out s: String)
sinshorthands-used;s . shortFor:=t; used +=s

lookup (s: String, out t: Targe
sinused;t:=s.shortFor

unregister (s: String)
sinused;used -=s;s.sh

\

concept Expiring [Resource]

purpose handle expiration of short-lived resources
principle if you allocate a resource r for t seconds, after
tseconds the resource expires

state

active: set Resource

expiry: active - one Date
actions

allocate (rsrc: Resource, time: int)

rsrc notin active
active +=rsrc
rsrc. expiry := time sec. after now

system expire (out rsrc: Resource)

25

Timelines of actions

COV\LQQ“' \SII\D'AQ"“"U . Concept ES(ei'fiuxg

| |

when W-j'lﬂ'bv[“c‘) .
wa{mr(wiftdu, “haok ") - owtelr) * " allotade (*hack” | Ib00)

|

(ooku? (“kauk“| wi(.h‘v‘)

C.A.R.Hoare
Communicating
Sequential
Processes

CARMHOARE SERES EDTOR

& IWIL—

. u . _when Wr""*f") . o (u “ Formulation of
anj!ﬂui(e wwrtgife() pt (Fhouk) synchronization

due to Tony Hoare 34

53 Modular

Dependencies and subsets

Yellkey

We have designed our concepts so they have no intrinstic dependencies

What are the extrinsic dependencies?

Shortening [«— Expiring

"If we include Expiring, we must also include Shortening"

36

Designing Software for Ease of Extension

and

Contraction

DAVID L. PARNAS

Abstract—Designing software to be extensible and easily col
discussed as a special case of design for change. A number of]
extension and contraction problems manifest themselves
software are explained. Four steps in the design of softw]
more flexible are then discussed. The most critical step is th
a software structure called the “uses” relation. Some criteria|
decisions are given and illustrated using a small example.
that the identification of minimal subsets and minimal exte
lead to software that can be tailored to the needs of a bro:
users.

Index Terms—Contractibility, extensibility, modularity, so
gineering, subsets, supersets.

1) “We were behind schedule and wanted to
deliver an early release with only a <proper subset
of intended capabilities>, but found that that

s subset would not work until everything worked.”

2) “We wanted to add <simple capability>, but to
do so would have meant rewriting all or most of
the current code”

this simplification we would have had to rewrite major sec-
tions of the code.”

Manuscript received June 7, 1978; revised October 26, 1
earliest work in this paper was supported by NV Phillips Co
dustrie, Apeldoorn, The Netherlands. This work was also su
the National Science Foundation and the German Federal M
Research and Technology (BMFT). This paper was presen
Third International Conference on Software Engineering, At}
May 1978.

The author is with the Department of Computer Science,
of North Carolina, Chapel Hill, NC 27514. He is also with th
tion Systems Staff, Communications Sciences Division, Nava|
Laboratory, Washington, DC.

0098-5589/74

... | have identified some simple concepts that can
help programmers to design software so that
subsets and extensions are more easily obtained.
These concepts are simple if you think about
software in the way suggested by this paper.
Programmers do not commonly do so.

37

Designing Software for Ease of Extension
and Contraction

DAVID L. PARNAS

Abstract—Designing software to be extensible and easily contracted is
discussed as a special case of design for change. A number of ways that
extension and contraction problems manifest themselves in current
software are explained. Four steps in the design of software that is
more flexible are then discussed. The most critical step is the design of
a software structure called the “uses” relation. Some criteria for design
decisions are given and illustrated using a small example. It is shown
that the identification of minimal subsets and minimal extensions can
lead to software that can be tailored to the needs of a broad variety of
users.

Index Terms—Contractibility, extensibility, modularity, software en-
gineering, subsets, supersets.

I. INTRODUCTION

HIS paper is being written because the following com-
plaints about software systems are so common.

1) “We were behind schedule and wanted to deliver an early
release with only a <proper subset of intended capabilities>,
but found that that subset would not work until everything
worked.”

2) “We wanted to add <simple capability>>, but to do so
would have meant rewriting all or most of the current code.”

3) “We wanted to simplify and speed up the system by re-
moving the <unneeded capability>, but to take advantage of
this simplification we would have had to rewrite major sec-
tions of the code.”

The criteria to be used in allowing one [module] to use another:

We propose to allow A “uses” B when all of the following conditions hold:
a) Ais essentially simpler because it uses B;

b) B is not substantially more complex because it is not allowed to use A;
c) there is a useful subset containing B and not A;

d) there is no conceivably useful subset containing A but not B.

38

3 Modular

Dependencies and subsets

Hacker News

3 posting.ts allow Post uses Comment when...
Post .
(c) there is a useful subset
class Post 3 .
l containing Comment and not Post;
readonly comments: Comment[]; .
? (d) there is no useful subset
Comment containing Post but not Comment

The criteria to be used in allowing one [module] to use another:

We propose to allow A “uses” B when all of the following conditions hold:
a) Ais essentially simpler because it uses B;

b) B is not substantially more complex because it is not allowed to use A;
c) there is a useful subset containing B and not A;

d) there is no conceivably useful subset containing A but not B.

39

3 Modular

Dependencies and subsets

Hacker News

@ posting.ts n

class Post 1§ l’]O

readonly ts: Comment[];
£ | ComMent

exactly backwards!

allow Post uses Comment when...
(c) thereisa
containing Co
(d) thereis no .
containing Post but not Comment

a) Ais essentially simpler because it uses B;

c) there is a useful subset containing B and not A;

The criteria to be used in allowing one [module] to use another:
We propose to allow A “uses” B when all of the following conditions hold:

b) B is not substantially more complex because it is not allowed to use A;

d) there is no conceivably useful subset containing A but not B. 39

53 Modular

Dependencies and subsets

Hacker News

Karma Tracking

-

Commenting

Upvoting

Favoriting

'

N\

By eliminating intrinsic dependencies
when there is no extrinsic dependency,
we are prepared to build subsets and

extensions
e.g.
{ Posting }
. { Posting, Commenting }
Session-ing { Posting, Upvoting,

Karma Tracking, Auth-ing}

\A

Posting

HarmraFrackinst

Authenticating

A

9

B

means: an app that includes A must also include B

(do Upvoting, Commenting, and Posting also depend on Authenticating? maybe!)

A0

%a Synchronization

Another example

& Expiring Authentication Sessions
Expiring shows up in many contexts
Authenticating without sessions?

Session-ing without authentication?

41

%a Synchronization

Another example

& Expiring Authentication Sessions

concept Authenticating

purpose authenticate users so that app users
correspond to people

principle after a user registers with a username and
password pair, they can authenticate as that user by
providing the pair:

register (n, p, u); authenticate (n, p, u) {u'=u}

state

registered: set User
username, password: registered - one String

actions

register (name, pass: String, out user: User)
authenticate (name, pass: String, out user: User)

42

%a Synchronization

Another example

2 Expiring Authentication Sessions

concept Authenticating

purpose authenticate users so

that app users correspond to

people

actions

register (name, pass: String,
out user: User)

authenticate (name, pass: String,
out user: User)

concept Session-ing [User]

purpose enable authenticated actions for an
extended period of time

principle after a session starts (and before it
ends), the getUser action returns the user
identified at the start:

start (u, s); getUser (s, u) {u' =u}

state

active: set Session
user: active - one User

actions

start (user: User, out sess: Session)
getUser (sess: Session, out user: User)
end (sess: Session)

43

%a Synchronization

Another example

2 Expiring Authentication Sessions

concept Authenticating

purpose authenticate users so

that app users correspond to

people

actions

register (name, pass: String,
out user: User)

authenticate (name, pass: String,
out user: User)

concept Session-ing [User]
purpose enable authenticated
actions for an extended period
of time

actions

start (user: User, out s: Session)
getUser (s: Session, out user: User)
end (s: Session)

concept Expiring [Resource]
purpose handle expiration of
short-lived resources

actions

allocate (r: Resource, time: int)
deallocate (r: Resource)
system expire (out r: Resource)

44

%a Synchronization

Another example

2 Expiring Authentication Sessions

concept Authenticating concept Session-ing [User] concept Expiring [Resource]

purpose authenticate usersso purpose enable authenticated purpose handle expiration of

that app users correspond to actions for an extended period short-lived resources

people of time

actions actions actions

register (name, pass: String, start (user: User, out s: Session) |allocate (r: Resource, time: int)
out user: User) getUser (s: Session,out user: User) deallocate (r: Resource)

authenticate (name, pass: String, end (s: Session) system expire (out r: Resource)

out user: User)

45

app ...
...including other concepts ...
include Authenticating, Sessioning [Authenticating.User], Expiring [Sessioning.Session]

sync register (username, password: String, out user: User)
Authenticating.register (username, password, user)

sync login (username, password: String, out user: User, out session: Session)

Authenticating.authenticate (username, password, user)
Sessioning.start (user, session)
Expiring.allocate (session, 300)

sync authenticate (session: Session, out user: User)
Sessioning.getUser (session, user)

sync logout (session: Session) system sync expire (session: Session)
Sessioning.end (session) Expiring.expire (session)
Expiring.deallocate (session) Sessioning.end (session)

46

concept ExpiringAuthenticationSessions | € slow down, start with one flat collection, not a hierarchy

include Authenticating, Sessioning [Authenticating.User], Expiring [Sessioning.Session]

sync register (username, password: String, out user: User)
Authenticating.register (username, password, user)

sync login (username, password: String, out user: User, out session: Session)

Authenticating.authenticate (username, password, user)
Sessioning.start (user, session)
Expiring.allocate (session, 300)

sync authenticate (session: Session, out user: User)
Sessioning.getUser (session, user)

sync logout (session: Session) system sync expire (session: Session)
Sessioning.end (session) Expiring.expire (session)
Expiring.deallocate (session) Sessioning.end (session)

46

QO Semantic @ Purposive 3} Modular %a Synchronization

Keepingitsimple
part I: concepts
Recognize existing patterns and factor them out

Converge on concepts where each fulfills exactly 1 purpose: not 2, not %2

Reuse existing knowledge -and- consider broader design implications

part ll: synchronizations
Atomic (like individual concept actions): all or nothing

Not the place for complexity

Simple concepts plus simple synchronizations can equal interesting novel behavior
47

One last example
& Bluebikes

Ebikes can be reserved for for up to 10 minutes,
at the same price per minute as riding

concept Reserving [Resource]

Annual Membership applied

MIT Stata Center at Vassar St / X

Main St
BLUEDikes. - $0.10 per minute (ebike) ®
17 1 9
classic ebikes open docks

B2 Scan Reserve

48

Today

Concepts as state machines with relational state
For structuring functionality: © Semantic @ Purposive £} Modular

Dependencies and subsets
Extrinstic dependency graph shows us coherent subsets of an application

Patterns
|dentifying and factoring out reusable concepts

Composition by synchronization
Behavior of individual concepts is preserved

Looking ahead

Concept design moves
Designing data and services

