
6.1040: So�tware Design

Concept Basics
Arvind Satyanarayan & Max Goldman
with material by Daniel Jackson

Fall ’24

1

Levels of design

physical

color, size, layout,
type, touch, sound

linguistic

icons, labels, tooltips,
site structure

conceptual

semantics, actions,
data model, purpose

so�tware concepts
 Semantic
 Purposive
 Modular

2

Diverging and converging

3

4

5

concept Yellkey

purpose what is it for?

principle
a small story that explains how it works

6

concept Yellkey

purpose shorten URLs to common words

principle
a�ter registering a URL and getting a shorthand for it,
looking up that shorthand will yield the URL, until expiry

actions
what behaviors do users experience?

7

concept Yellkey

purpose shorten URLs to common words

principle
a�ter registering a URL and getting a shorthand for it,
looking up that shorthand will yield the URL, until expiry

actions
register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)
system expire (out short: String)

8

concept Yellkey

purpose shorten URLs to common words

principle
a�ter registering a URL u for time t and getting a shorthand s,
looking up s will yield u until the shorthand expires time t later

actions
register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)
system expire (out short: String)

9

concept Yellkey

purpose shorten URLs to common words

principle
a�ter register (u, t, s) then lookup (s, u) until expire (s)

actions
register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)
system expire (out short: String) treating inputs &

outputs uniformly
10

concept Yellkey

purpose shorten URLs to common words

principle
a�ter register (u, t, s) then lookup (s, u) until expire (s)

state
what must be stored to support the actions?

actions
register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)
system expire (out short: String)

11

concept Yellkey

purpose shorten URLs to common words

principle
a�ter register (u, t, s) then lookup (s, u) until expire (s)

state
const shorthands: set String
used: set String
shortFor: used one URL
expiry: used one Date

actions
register (url: URL, time: int, out short: String)
lookup (short: String, out url: URL)
system expire (out short: String)

every String in used is
associated with exactly
one URL & Date

12

concept Yellkey

purpose
shorten URLs to common words

principle
a�ter registering a URL u for time t
and getting a shorthand s,
looking up s will yield u until the
shorthand expires time t later

state
const shorthands: set String
used: set String
shortFor: used one URL
expiry: used one Date

actions
register (url: URL, time: int, out short: String)

pick short from the set shorthands-used
update shortFor so that short url
update expiry so that short time sec. a�ter now
add short to used

lookup (short: String, out url: URL)
require short in used
url is the URL associated with short by shortFor

system expire (out short: String)
require expiry of short is before now
remove short from used
update shortFor and expiry so that short none

nondeterminism

preconditions

postconditions
invariants

what behaviors do users experience? ...

... what must be stored
to support the actions?

13

concept Yellkey

purpose
shorten URLs to common words

principle
a�ter registering a URL u for time t
and getting a shorthand s,
looking up s will yield u until the
shorthand expires time t later

state
const shorthands: set String
used: set String
shortFor: used one URL
expiry: used one Date

actions
register (url: URL, time: int, out short: String)

short in shorthands - used
short.shortFor := url
short.expiry := time sec. after now
used += short

lookup (short: String, out url: URL)
short in used
url := short.shortFor

system expire (out short: String)
short.expiry < now
used -= short
short.shortFor := none
short.expiry := none

14

Relational state
shortFor: String one URL

shortFor is a binary relation from String to one URL, e.g.

{ ("hack", http://web.mit.edu/),
 ("punt", https://�����-fa��.github.io/),
 ("never", https://www.youtube.com/watch?v=MA_v�YMPN�c) }

Relational join
lookup (short: String, out url: URL)

url := short.shortFor

{ ("hack") } . {
("hack", mit.edu),
("punt", �����),
("never", youtube)

 } = { (mit.edu) }

15

Relational state
shortFor: String one URL

shortFor is a binary relation from String to one URL, e.g.

{ ("hack", http://web.mit.edu/),
 ("punt", https://�����-fa��.github.io/),
 ("never", https://www.youtube.com/watch?v=MA_v�YMPN�c) }

Relational join
lookup (short: String, out url: URL)

url := short.shortFor

{ ("hack") } . {
("hack", mit.edu),
("punt", �����),
("never", youtube)

 } = { (mit.edu) }

Relational update
register (url: URL, time: int, out short: String)

short.shortFor := url

shortFor′ = shortFor – (short, *) + (short, url)

new shortFor

old shortFor
remove old pairs 15

Relational state
shortFor: String one URL

shortFor is a binary relation from String to one URL, e.g.

{ ("hack", http://web.mit.edu/),
 ("punt", https://�����-fa��.github.io/),
 ("never", https://www.youtube.com/watch?v=MA_v�YMPN�c) }

Relational join
lookup (short: String, out url: URL)

url := short.shortFor

{ ("hack") } . {
("hack", mit.edu),
("punt", �����),
("never", youtube)

 } = { (mit.edu) }

& other operations, e.g.
allShorthands (url: URL, out shorts: set String)

shorts := url.~shortFor

{ (mit.edu) } . {
(mit.edu, "hack"),
(�����, "punt"),
(youtube, "never")

 } = { ("hack") }

inverse of shortFor

16

concept Yellkey

purpose
shorten URLs to common words

principle
a�ter registering a URL u for time t
and getting a shorthand s,
looking up s will yield u until the
shorthand expires time t later

state
const shorthands: set String
used: set String
shortFor: used one URL
expiry: used one Date

actions
register (url: URL, time: int, out short: String)

short in shorthands - used
short.shortFor := url
short.expiry := time sec. after now
used += short

lookup (short: String, out url: URL)
short in used
url := short.shortFor

system expire (out short: String)
short.expiry < now
used -= short
short.shortFor := none
short.expiry := none

Alternative design:
What if we modi�ed
register (...) so that it
replaced any
existing shorthand
for the URL, instead
of adding?

17

Something unsatisfying about concept Yellkey
Shortening and Expiring are both
patterns we have seen elsewhere

They can be expressed generically

And we can describe Yellkey as a
combination of Shortening + Expiring

 Semantic
 about underlying behavior users experience

Not internals, user-facing
Not UI, but underlying function
Not just structure, behavior

 Purposive
 ful�lls an entire user need

Included for a reason
End-to-end, not just a fragment

 Modular
 mutually independent

Generic (using polymorphic parameters)
Reusable within and across apps

18

(1977) (1979)
19

concept Yellkey

purpose
shorten URLs to common words

principle
a�ter registering a URL u for time t
and getting a shorthand s,
looking up s will yield u until the
shorthand expires time t later

state
const shorthands: set String
used: set String
shortFor: used one URL
expiry: used one Date

actions
register (url: URL, time: int, out short: String)

short in shorthands - used
short.shortFor := url
short.expiry := time sec. after now
used += short

lookup (short: String, out url: URL)
short in used
url := short.shortFor

system expire (out short: String)
short.expiry < now
used -= short
short.shortFor := none
short.expiry := none

20

concept Shortening �rst dra�t

purpose
provide access via short strings

principle
a�ter registering a URL u
and getting a shorthand s,
looking up s will yield u until
???

state
const shorthands: set String
used: set String
shortFor: used one URL

Factoring out Shortening
actions

register (url: URL, out short: String)
short in shorthands - used
short.shortFor := url
used += short

lookup (short: String, out url: URL)
short in used
url := short.shortFor

???
used -= short
short.shortFor := none

21

concept Shortening [Target]

purpose
provide access via short strings

principle
a�ter registering a target t
and getting a shorthand s,
looking up s will yield t,
until s is unregistered

state
const shorthands: set String
used: set String
shortFor: used one Target

actions
register (target: Target, out short: String)

short in shorthands - used
short.shortFor := target
used += short

lookup (short: String, out target: Target)
short in used
target := short.shortFor

unregister (short: String)
short in used
used -= short
short.shortFor := none

22

concept Shortening [Target]
purpose provide access via short strings
principle a�ter registering a target t and getting
a shorthand s, looking up s will yield t
state

const shorthands: set String
used: set String
shortFor: used one Target

actions
register (t: Target, out s: String)

s in shorthands - used ; s.shortFor := t ; used += s

lookup (s: String, out t: Target)
s in used ; t := s.shortFor

unregister (s: String)
s in used ; used -= s ; s.shortFor := none

concept Expiring [Resource]
purpose handle expiration of short-lived resources
principle if you allocate a resource r for t seconds,
a�ter t seconds the resource expires

state
active: set Resource
expiry: active one Date

actions
allocate (rsrc: Resource, time: int)

rsrc not in active
active += rsrc
rsrc.expiry := time sec. a�ter now

system expire (out rsrc: Resource)
rsrc in active ; rsrc.expiry is before now
active -= rsrc ; rsrc.expiry := none

concept Shortening [Target]
purpose provide access via short strings
principle a�ter registering a target t and getting
a shorthand s, looking up s will yield t
state

const shorthands: set String
used: set String
shortFor: used one Target

actions
register (t: Target, out s: String)

s in shorthands - used ; s.shortFor := t ; used += s

lookup (s: String, out t: Target)
s in used ; t := s.shortFor

unregister (s: String)
s in used ; used -= s ; s.shortFor := none

concept Expiring [Resource]
purpose handle expiration of short-lived resources
principle if you allocate a resource r for t seconds,
a�ter t seconds the resource expires

state
active: set Resource
expiry: active one Date

actions
allocate (rsrc: Resource, time: int)

rsrc not in active
active += rsrc
rsrc.expiry := time sec. a�ter now

system expire (out rsrc: Resource)
rsrc in active ; rsrc.expiry is before now
active -= rsrc ; rsrc.expiry := none

24

Synchronizing concepts to build an app
app Yellkey

include Shortening [URL]
include Expiring [String]

sync register (url: URL, time: int, out short: String)
Shortening.register (url, short)
Expiring.allocate (short, time)

system sync expire (out short: String)
Expiring.expire (short)
Shortening.unregister (short)

sync lookup (short: String, out url: URL)
Shortening.lookup (short, url)

concept Shortening [Target]
purpose provide access via short strings
principle a�ter registering a target t and getting
a shorthand s, looking up s will yield t
state

const shorthands: set String
used: set String
shortFor: used one Target

actions
register (t: Target, out s: String)

s in shorthands - used ; s.shortFor := t ; used += s

lookup (s: String, out t: Target)
s in used ; t := s.shortFor

unregister (s: String)
s in used ; used -= s ; s.shortFor := none

concept Expiring [Resource]
purpose handle expiration of short-lived resources
principle if you allocate a resource r for t seconds, a�ter
t seconds the resource expires

state
active: set Resource
expiry: active one Date

actions
allocate (rsrc: Resource, time: int)

rsrc not in active
active += rsrc
rsrc.expiry := time sec. a�ter now

system expire (out rsrc: Resource)

25

Timelines of actions

Formulation of
synchronization
due to Tony Hoare

concept behavior is always preserved

34

 Modular

Dependencies and subsets
Yellkey
We have designed our concepts so they have no intrinstic dependencies

What are the extrinsic dependencies?

ExpiringShortening

"If we include Expiring, we must also include Shortening"

36

1) “We were behind schedule and wanted to
deliver an early release with only a < proper subset
of intended capabilities>, but found that that
subset would not work until everything worked.”
2) “We wanted to add < simple capability>, but to
do so would have meant rewriting all or most of
the current code.”

... I have identi�ed some simple concepts that can
help programmers to design so�tware so that
subsets and extensions are more easily obtained.
These concepts are simple if you think about
so�tware in the way suggested by this paper.
Programmers do not commonly do so. 37

The criteria to be used in allowing one [module] to use another:
We propose to allow A “uses” B when all of the following conditions hold:
a) A is essentially simpler because it uses B;
b) B is not substantially more complex because it is not allowed to use A;
c) there is a useful subset containing B and not A;
d) there is no conceivably useful subset containing A but not B. 38

 Modular

Dependencies and subsets
Hacker News

 posting.ts

class Post {
 readonly comments: Comment[];
}

The criteria to be used in allowing one [module] to use another:
We propose to allow A “uses” B when all of the following conditions hold:
a) A is essentially simpler because it uses B;
b) B is not substantially more complex because it is not allowed to use A;
c) there is a useful subset containing B and not A;
d) there is no conceivably useful subset containing A but not B.

Post

Comment

allow Post uses Comment when...
(c) there is a useful subset
containing Comment and not Post;
(d) there is no useful subset
containing Post but not Comment

39

 Modular

Dependencies and subsets
Hacker News

 posting.ts

class Post {
 readonly comments: Comment[];
}

The criteria to be used in allowing one [module] to use another:
We propose to allow A “uses” B when all of the following conditions hold:
a) A is essentially simpler because it uses B;
b) B is not substantially more complex because it is not allowed to use A;
c) there is a useful subset containing B and not A;
d) there is no conceivably useful subset containing A but not B.

Post

Comment

allow Post uses Comment when...
(c) there is a useful subset
containing Comment and not Post;
(d) there is no useful subset
containing Post but not Comment

exactly backwards!

no no no

39

 Modular

Dependencies and subsets
Hacker News

Commenting

Posting

Upvoting Favoriting

Karma Tracking

Authenticating

Session-ing

A B means: an app that includes A must also include B

(do Upvoting, Commenting, and Posting also depend on Authenticating? maybe!)

By eliminating intrinsic dependencies
when there is no extrinsic dependency,
we are prepared to build subsets and
extensions

e.g.
{ Posting }
{ Posting, Commenting }
{ Posting, Upvoting,
 Karma Tracking, Auth-ing }

{ Karma Tracking }

40

 Synchronization

Another example
 Expiring Authentication Sessions

Expiring shows up in many contexts

Authenticating without sessions?

Session-ing without authentication?

41

 Synchronization

Another example
 Expiring Authentication Sessions

concept Authenticating
purpose authenticate users so that app users
correspond to people
principle a�ter a user registers with a username and
password pair, they can authenticate as that user by
providing the pair:
register (n, p, u); authenticate (n, p, u') {u' = u}

state
registered: set User
username, password: registered one String

actions
register (name, pass: String, out user: User)
authenticate (name, pass: String, out user: User)

42

 Synchronization

Another example
 Expiring Authentication Sessions

concept Authenticating
purpose authenticate users so
that app users correspond to
people
actions
register (name, pass: String,

out user: User)
authenticate (name, pass: String,

out user: User)

concept Session-ing [User]
purpose enable authenticated actions for an
extended period of time
principle a�ter a session starts (and before it
ends), the getUser action returns the user
identi�ed at the start:
start (u, s); getUser (s, u') {u' = u}

state
active: set Session
user: active one User

actions
start (user: User, out sess: Session)
getUser (sess: Session, out user: User)
end (sess: Session)

43

 Synchronization

Another example
 Expiring Authentication Sessions

concept Expiring [Resource]
purpose handle expiration of
short-lived resources

actions
allocate (r: Resource, time: int)
deallocate (r: Resource)
system expire (out r: Resource)

concept Authenticating
purpose authenticate users so
that app users correspond to
people
actions
register (name, pass: String,

out user: User)
authenticate (name, pass: String,

out user: User)

concept Session-ing [User]
purpose enable authenticated
actions for an extended period
of time
actions
start (user: User, out s: Session)
getUser (s: Session, out user: User)
end (s: Session)

44

 Synchronization

Another example
 Expiring Authentication Sessions

concept Authenticating
purpose authenticate users so
that app users correspond to
people
actions
register (name, pass: String,

out user: User)
authenticate (name, pass: String,

out user: User)

concept Session-ing [User]
purpose enable authenticated
actions for an extended period
of time
actions
start (user: User, out s: Session)
getUser (s: Session, out user: User)
end (s: Session)

concept Expiring [Resource]
purpose handle expiration of
short-lived resources

actions
allocate (r: Resource, time: int)
deallocate (r: Resource)
system expire (out r: Resource)

45

app ...
... including other concepts ...
include Authenticating, Sessioning [Authenticating.User], Expiring [Sessioning.Session]

sync register (username, password: String, out user: User)
Authenticating.register (username, password, user)

sync login (username, password: String, out user: User, out session: Session)
Authenticating.authenticate (username, password, user)
Sessioning.start (user, session)
Expiring.allocate (session, 300)

sync authenticate (session: Session, out user: User)
Sessioning.getUser (session, user)

sync logout (session: Session)
Sessioning.end (session)
Expiring.deallocate (session)

system sync expire (session: Session)
Expiring.expire (session)
Sessioning.end (session)

46

app ...
... including other concepts ...
include Authenticating, Sessioning [Authenticating.User], Expiring [Sessioning.Session]

sync register (username, password: String, out user: User)
Authenticating.register (username, password, user)

sync login (username, password: String, out user: User, out session: Session)
Authenticating.authenticate (username, password, user)
Sessioning.start (user, session)
Expiring.allocate (session, 300)

sync authenticate (session: Session, out user: User)
Sessioning.getUser (session, user)

sync logout (session: Session)
Sessioning.end (session)
Expiring.deallocate (session)

system sync expire (session: Session)
Expiring.expire (session)
Sessioning.end (session)

 concept ExpiringAuthenticationSessions slow down, start with one �lat collection, not a hierarchy

46

 Synchronization Semantic Purposive Modular

Keeping it simple
part I: concepts
Recognize existing patterns and factor them out

Converge on concepts where each ful�lls exactly 1 purpose: not 2, not ½

Reuse existing knowledge -and- consider broader design implications

part II: synchronizations
Atomic (like individual concept actions): all or nothing

Not the place for complexity

Simple concepts plus simple synchronizations can equal interesting novel behavior
47

One last example
 Bluebikes

Ebikes can be reserved for for up to 10 minutes,
at the same price per minute as riding

concept Reserving [Resource]

48

Today
Concepts as state machines with relational state

For structuring functionality: Semantic Purposive Modular

Dependencies and subsets
Extrinstic dependency graph shows us coherent subsets of an application

Patterns
Identifying and factoring out reusable concepts

Composition by synchronization
Behavior of individual concepts is preserved

Looking ahead
Concept design moves
Designing data and services

49

